Abstract
This research investigated the relationship between volume energy density and the microstructure, density, and mechanical properties of the Ti-5Al-5Mo-3V-1Cr-1Fe alloy fabricated via the SLM process. The results indicate that an increase in volume energy density can promote a transition from a columnar to an equiaxed grain structure and suppress the anisotropy of mechanical properties. Specifically, at a volume energy density of 83.33 J/mm3, the average aspect ratio of β grains reached 0.77, accompanied by the formation of numerous nano-precipitated phases. Furthermore, the relative density of the alloy initially increased and then decreased as the volume energy density increased. At a volume energy density of 83.33 J/mm3, the relative density reached 99.6%. It is noteworthy that an increase in volume energy density increases the β grain size. Consequently, with a volume energy density of 83.33 J/mm3, the alloy exhibited an average grain size of 63.92 μm, demonstrating optimal performance with a yield strength of 1003.06 MPa and an elongation of 18.16%. This is mainly attributable to the fact that an increase in volume energy density enhances thermal convection within the molten pool, leading to alterations in molten pool morphology and a reduction in temperature gradients within the alloy. The reduction in temperature gradients promotes equiaxed grain transformation and grain refinement by increasing constitutive supercooling at the leading edge of the solid-liquid interface. The evolution of molten pool morphology mainly inhibits columnar grain growth and refines grain by changing the grain growth direction. This study provided a straightforward method for inhibiting anisotropy and enhancing mechanical properties.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.