Abstract
The luminescence properties of ion-beam doped silica and quartz depend sensitively on the ion species and fluence and the thermal processing during and after ion implantation. In an attempt to achieve high luminescence intensity and full planar recrystallization of α-quartz, we studied double Ge∕Rb-ion implantation, where the Rb ions serve as a catalyst only. Synthetic α-quartz samples were irradiated with 175 keV Rb ions and subsequently with 120 keV Ge ions with fluences of 1×1014–1×1016ions∕cm2 and postannealed at 1170 K in air. A comparative analysis of the epitaxy, migration of the implanted ions, and cathodoluminescence (CL) were carried out. The CL spectra exhibit three strong emission bands in the blue/violet range at 2.95, 3.25, and 3.53 eV, which were assigned to Rb- and/or Ge-related defect centers. For up to 1015 implanted Geions∕cm2, large fraction (75%) of the Ge atoms reach substitutional Si sites after the epitaxy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.