Abstract

Hydrogen (H2) production from alkaline water electrocatalysis is economically appealing yet significantly hindered by the sluggish H2O adsorption and H* binding kinetics on active sites during hydrogen evolution reaction (HER). Herein, we interfacially immobilize Ru clusters on the hierarchical nickel nitride (Ru-Ni3N) nanosheet arrays via the filling of Ru3+ species into the metal vacancies of nickel hydroxide precursors and the subsequent controllable nitridation. The optimized Ru-Ni3N shows the outstanding HER performance, affording a 30-fold rise in the intrinsic activity of Ni sites, a outperforming-Pt/C overpotential at ≥ 125 mA cm−2 while remaining a robust stability. We further establish by a combined study of density functional theory (DFT) calculations with experimental analyses that long-range Ni sites around Ru sites act as active sites via the electron delocalization, remarkably weakening the H2O adsorption and H* binding barriers for enhancing the alkaline HER kinetics. Moreover, it also demonstrates an excellent pH-universal HER and overall water splitting performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.