Abstract
Clustering is an important and challenging research topic in many fields. Although various clustering algorithms have been developed in the past, traditional shallow clustering algorithms cannot mine the underlying structural information of the data. Recent advances have shown that deep clustering can achieve excellent performance on clustering tasks. In this work, a novel variational autoencoder-based deep clustering algorithm is proposed. It treats the Gaussian mixture model as the prior latent space and uses an additional classifier to distinguish different clusters in the latent space accurately. A similarity-based loss function is proposed consisting specifically of the cross-entropy of the predicted transition probabilities of clusters and the Wasserstein distance of the predicted posterior distributions. The new loss encourages the model to learn meaningful cluster-oriented representations to facilitate clustering tasks. The experimental results show that our method consistently achieves competitive results on various data sets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.