Abstract

Designing lanthanide luminescence lifetime sensors in the second near-infrared (NIR-II) window holds great potentials for physiological studies. However, the single lifetime signal is confined to one or two orders of magnitude of signal variation, which limits the sensitivity of lifetime probes. In this study, a lifetime cascade system, i.e., ZGO:Mn, Eu-DNA-1/TCPP-PEI70K @Yb-AptEpCAM , with a variety of signals (τm , τn , τµ , τm /τn and τm /τµ ) is constructed for exosome identification using time-domain multiplexing. The sensitized ligand TCPP acts as both target-modulated switch and a bridge for connecting long lifetime ZGO:Mn, Eu-DNA-1 emitter to lanthanide Yb3+ . This drives successive dual-path energy transfer and forms two D(donor) -A(acceptor) pairs. The lifetime variation is dominantly modulated by arranging TCPP as energy intermediate relay to covert milliseconds to nanoseconds to microseconds. It enables a broad lifetime range of six orders of magnitude. The presence of exosome specifically recognizes aptamers on TCPP-PEI70K @Yb-AptEpCAM to impede D-A pairs and reverse multiplexed response signals of the lifetime cascade system. The ratio lifetime signals τm /τn and τm /τµ achieve prominent exosome quantification and exosome type differentiation attributed to signal amplification. The cascade system relying on lifetime criteria can realize precise quantization and provide an effective strategy for subsequent physiological study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call