Abstract
P2-type layered Mn-based oxides are promising cathode materials for sodium-ion batteries (SIBs), but it is still challenging to achieve both high capacity and stability because of complex phase transitions and irreversible oxygen release at high voltage. To address these challenges, an optimal P2-type Na0.67Mn0.8Cu0.15Ti0.05O2 (NMCT) cathode with a complete solid-solution reaction and reversible oxygen redox reaction over a wide voltage range was developed. The introduction of the Na–O–Ti configuration leads to fewer delocalized electrons on oxygen and thus enhances oxygen redox activity, while the high energetic overlap between O 2p and Cu 3d states and the increased Mn–O hybridization strengthen the rigidity of oxygen framework to achieve reversible and stable oxygen redox reaction. In addition, the reinforced TM–O interaction, combined with the ameliorated Mn3+ Jahn-Teller distortion and disrupted Na+/vacancy ordering, synergistically eliminate the undesired P2–OP4 phase transition and lead to a complete solid-solution reaction, which greatly facilitates Na+ transport kinetics and stabilizes structural integrity. As a consequence, improved rate performance and cycling stability are achieved for NMCT. Our present study provides a promising avenue for simultaneously utilizing the reversible oxygen redox activity and maintaining the structural integrity to accomplish the capacity-stability trade-off of Mn-based oxide cathodes for constructing practical SIBs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.