Abstract

It is of practical significance to develop polymer-based room-temperature phosphorescence (RTP) materials with ultralong lifetime and multicolor afterglow. Herein, the benzocarbazole derivatives were selected and combined with a poly(vinyl alcohol) (PVA) matrix by a coassembly strategy. Owing to the hydrogen-bonding interactions between benzocarbazole derivatives and the PVA matrix, the nonradiative transition and the quenching of triplet excitons are effectively inhibited. Therefore, the maximum phosphorescence emission lifetime of 2202.17 ms from ABfCz-PVA and the maximum phosphorescence quantum efficiency of 34.97% from ABtCz-PVA were obtained, respectively. In addition, commercially available dye molecules were selected to construct phosphorescent resonance energy transfer (PRET) systems for energy acceptors, enabling full-color afterglow emission in blue, green, yellow, red, and even white. Based on the characteristics of prepared RTP materials, multifunctional applications to flexibility, information encryption, and erasable drawing were deeply explored.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call