Abstract

Effective algorithms in modern digital communication systems provide a fundamental basis for increasing the efficiency of the application networks which are in many cases neither optimized nor very close to their practical limits. Equalizations are one of the preferred methods for increasing the efficiency of application systems such as orthogonal frequency division multiplexing (OFDM). In this paper, we study the possibility of improving the OFDM modulation employing sliced multi-modulus algorithm (S-MMA) equalization. We compare applying the least mean square (LMS), multi modulus algorithm (MMA) and S-MMA equalizations to the per tone equalization in the OFDM modulation. The paper contribution lies in using the S-MMA technique, for weight adaptation, to decreasing the BER in the OFDM multicarrier modulation. For more efficiency, it is assumed that the channel impulse response is longer than the cyclic prefix (CP) length and as a result, the system will be more efficient but at the expense of the high intersymbol interference (ISI) impairment existing. Both analysis and simulations demonstrate better performance of the S-MMA compared to LMS and MMA algorithms, in standard channels with additive white Gaussian noise (AWGN) and ISI impairment simultanously. Therefore, the S-MMA equalization is a good choice for high speed and real-time applications such as OFDM based systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.