Abstract

Strain engineering has become an efficient way to tune the optical and electronic behaviors of metal halide perovskites as a result of their unique structure-dependent optoelectronic characteristics. In this work, we show that the band gap can be reduced and, meanwhile, the carrier lifetime is increased by simply stretching the MAPbI3-xClx perovskite thin films. The narrowed band gap and prolonged carrier lifetime are beneficial for the photovoltaic actions, indicating that mechanical stretching can be a simple and efficient way to achieve photovoltaic property optimization of stretchable perovskite-based devices. Furthermore, Raman spectra show that the Pb-I bond length is shortened with mechanical stretching, which increases the valence band maximum (VBM) through orbital coupling, leading to a narrower band gap. Consequently, the trap states near VBM can be radiative as the trap energy levels become closer to the VBM, resulting in a prolonged carrier lifetime. This work brings huge opportunities to control the optoelectronic properties of metal halide perovskites through mechanical stress toward optoelectronic applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.