Abstract

Discovery of species with adaptive aromaticity (being aromatic in both the lowest singlet and triplet states) is particularly challenging as cyclic species are generally aromatic either in the ground state or in the excited state only, according to Hückel's and Baird's rules. Inspired by the recent realization of cyclo[18]carbon, here we demonstrate that cyclo[10]carbon possesses adaptive aromaticity by screening cyclo[n]carbon (n=8-24), which is supported by nucleus-independent chemical shift (NICS), anisotropy of the current-induced density (ACID), π contribution of electron localization function (ELFπ ) and electron density of delocalized bonds (EDDB) analyses. Further study reveals that the lowest triplet state of cyclo[10]carbon is formed by in-plane ππ* excitation. Thus, the major contribution to the aromaticity from out-of-plane π molecular orbitals does not change significantly in the lowest singlet state. Our findings highlight a crucial role of out-of-plane π orbitals in maintaining aromaticity for both the lowest singlet and triplet states as well as the aromaticity dependence on the number of the carbon in cyclo[n]carbon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.