Abstract

In complex urban traffic scenarios, autonomous vehicles face significant challenges in adapting to diverse and dynamic traffic conditions. Reward-based reinforcement learning has emerged as an effective approach to tackle these challenges. This paper presents a novel method that combines deep reinforcement learning with automotive dynamics systems. Building upon the Double Deep Q-learning algorithm, our approach integrates a Recurrent Neural Network with Gated Recurrent Units to enhance the environmental exploration capabilities of autonomous vehicles. To obtain more precise reward values, we introduce a trajectory tracking algorithm based on a combination of proportional-integral-derivative control and feedforward control within the automotive dynamics system. The proportional-integral-derivative controller is utilized for longitudinal control, while the Error-Optimized feedforward controller enhances lateral control, thereby improving trajectory tracking accuracy. Finally, extensive simulation experiments are conducted to evaluate the proposed method, comparing it against other baseline methods in terms of vehicle following and lane-changing scenarios. The results demonstrate that our approach significantly improves both the reward values and control performance of the algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call