Abstract
In this combined computational and experimental study, specific chemical interactions affecting the prediction of one-electron and two-electron reduction potentials for anthraquinone derivatives are investigated. For 19 redox reactions in acidic aqueous solution, where AQ is reduced to hydroanthraquinone, density functional theory (DFT) with the polarizable continuum model (PCM) gives a mean absolute deviation (MAD) of 0.037 V for 16 species. DFT(PCM), however, highly overestimates three redox couples with a MAD of 0.194 V, which is almost 5 times that of the remaining 16. These three molecules have ether groups positioned for intramolecular hydrogen bonding that are not balanced with the intermolecular H-bonding of the solvent. This imbalanced description is corrected by quantum mechanics/molecular mechanics (QM/MM) simulations, which include explicit water molecules. The best theoretical estimations result in a good correlation with experiments, V(Theory) = 0.903V(Expt) + 0.007 with an R2 value of 0.835...
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.