Abstract
AbstractWater wave energy is regarded to be a promising renewable energy source to relieve the pressure of fossil energy shortage and achieve a sustainable future. A cylindrical wave‐driven linkage mechanism triboelectric nanogenerator (WLM‐TENG) with unidirectional rotation is designed and fabricated to effectively harvest water wave energy. The enormous force generated by water waves, which is up to 424.3 N m−2, is used to drive the TENG through its simple and smart mechanical structure. This force allows the rotor to overcome the large resistance caused by the full contact between rabbit furs and electrodes. The output current can reach about 30 µA and the output power arrives at 50 mW. Moreover, self‐powered applications powered by the WLM‐TENG are successfully demonstrated, including indicating light‐emitting diodes (LEDs), multifunctional barometer, portable anemometer, and multifunctional water quality detection pen. This work renders an effective approach to harness the enormous force generated by the water waves, enhancing the water wave energy harvesting ability of the TENG, toward practical applications of marine environment monitoring.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.