Abstract

Targeting excess H2O2 in the tumor microenvironment, nanotheranostic agents for catalytic therapy are designed based on Fenton reaction, catalyzing H2O2 into oxygen and hydroxyl radical (OH). But the catalytic efficiency in tumor microenvironment is not satisfactory. In order to solve the problem, a series of bimetallic-dual ligands metal-organic frameworks Fe/Tm-MOFs were designed, that Fe3+ and Tm3+ as metalions, 2-methylimidazole and trimesic acid as ligands. Due to the doped Tm3+ in Fe/Tm-MOFs and the conjugated structures formed by two ligands, the rate of electron transfer was improved, thus promoting the generation of OH at some extent. In addition, the photothermal effect of Fe/Tm-MOFs further promotes the generation of OH, which was evidenced by the 3,3′,5,5′-tetramethylbenzidine(TMB). Combining the drug loading and release capabilities of Fe/Tm-MOFs, synergetic therapy of photothermal/chemo-/catalytic therapy can be achieved. In vitro results reveal that DOX release behaviors are both pH- and thermal-responsive. In vivo anti-cancer results show that the tumors of mice almost disappeared within 10 days, which were injected with Fe/Tm-MOFs/DOX and irradiated with 808 nm for 10 min. Thus, an excellent therapeutic performance has been achieved. Besides, Fe/Tm-MOFs can serve as a multimodality bioimaging contrast agent, covering fluorescence imaging, photothermal imaging and magnetic resonance imaging. Thus, an all-in-one nanotheranostic agent is constructed, improving the catalytic efficiency and providing a novel method to design an efficient nanotheranostic agent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.