Abstract

Crystal growth of eco-friendly, ultrawide bandgap aluminium gallium nitride (AlGaN) semiconductor-based ultraviolet-B (UVB) light-emitting diodes (LEDs) hold the potential to replace toxic mercury-based ultraviolet lamps. One of the major drawbacks in the utilisation of AlGaN-based UVB LEDs is their low efficiency of about 6.5%. The study investigates the influence of Al-graded p-type multi-quantum-barrier electron-blocking-layer (Al-grad p-MQB EBL) and Al-graded p-AlGaN hole source layer (HSL) on the generation and injection of 3D holes in the active region. Using the new UVB LED design, a significant improvement in the experimental efficiency and light output power of about 8.2% and 36 mW is noticed. This is accomplished by the transparent nature of Al-graded Mg-doped p-AlGaN HSL for 3D holes generation and p-MQB EBL structure for holes transport toward multi-quantum-wells via intra-band tunnelling. Based on both the numerical and experimental studies, the influence of sub-nanometre scale Ni film deposited underneath the 200 nm-thick Al-film p-electrode on the optical reflectance in UVB LED is investigated. A remarkable improvement in the efficiency of up to 9.6% and light output power of 40 mW, even in the absence of standard package, flip-chip, and resin-like lenses, is achieved on bare-wafer under continuous-wave operation at room temperature. The enhanced performance is attributed to the use of Al-graded p-MQB EBL coupled with softly polarised p-AlGaN HSL and the highly reflective 0.4 nm-thick Ni and 200 nm-thick Al p-electrode in the UVB LED. This research study provides a new avenue to improve the performance of high-power p-AlGaN-based UVB LEDs and other optoelectronic devices in III–V semiconductors.

Highlights

  • Crystal growth of eco-friendly, ultrawide bandgap aluminium gallium nitride (AlGaN) semiconductorbased ultraviolet-B (UVB) light-emitting diodes (LEDs) hold the potential to replace toxic mercurybased ultraviolet lamps

  • Aluminium gallium nitride (AlGaN) based semiconductors are one of the most promising candidates for the fabrication of smart, eco-friendly ultraviolet‐B (UVB) and deep ultraviolet (DUV) emitters that would meet the requirements of the Minamata Convention of 2­ 0201 and the 17 sustainable development goals (17 SDGs) of the ­UN2

  • In the crystal growth of improved UVB LED, Al-graded p-MQB EBL moderately doped with Mg was chosen, because of its utility as blocking of high-energy electrons and to allow the hole transport via thermionic emission as well as intra-band tunnelling from p-AlGaN hole source layer (HSL) toward the active region

Read more

Summary

Introduction

Crystal growth of eco-friendly, ultrawide bandgap aluminium gallium nitride (AlGaN) semiconductorbased ultraviolet-B (UVB) light-emitting diodes (LEDs) hold the potential to replace toxic mercurybased ultraviolet lamps.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.