Abstract

Low Voltage Scanning Electron Microscopy (LV-SEM) has become a very promising approach to perform Energy Dispersive X-ray (EDX) chemical mapping with high- lateral resolution [1]. Using voltages as low as 1.5keV, sub-10nm resolutions can be achieved. In this work, we try to take advantage of the small interaction volume in order to simplify the otherwise more complex SEM quantitative methodology. This way, phenomena such as absorption and fluorescence can be ignored and, effectively treat the quantification as with the Transmission Electron Microscopy (TEM)-based Cliff-Lorimer method. Experimental k- factors have been obtained from a series of standards and used to quantify complex oxide phases in steels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.