Abstract

Exploiting multiple-input–multiple-output (MIMO) techniques by using massive antennas can significantly improve the capacity and reliability of wireless systems and has been considered as one key technique in future fifth-generation mobile communications system. Considering the limitation of antenna panel size, placing the massive antennas in 2-D grid is an effective way for its commercialization, which is termed as “3D-MIMO.” In this paper, we study the performance of 3D-MIMO with massive antennas by system-level simulation using practical assumption and 3-D channel model and test the 3D-MIMO in field trial with commercial terminal and networks. In addition, we compare the system-level simulation results and the field trial test measurements. Our system-level simulation results show that the 3D-MIMO with 64 antennas can significantly improve the performance with 56% and 147% gain on cell-average and cell-edge throughputs compared with 2D-MIMO. We perform field trial to test the 3D-MIMO, and the results verify its performance gain obtained by simulation. Furthermore, the measurement in typical high-rise scenario shows that the 3D-MIMO can significantly enhance the data rate of users located at higher floors due to the capability of flexible elevation beamforming.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call