Abstract

A general approach of designing input-queued multicast switch is to employ multicast switch fabric, where packets can be replicated inside the switch fabric. As compared with unicast switch fabric, the achievable traffic rate region of a switch can be increased, but it is still less than the admissible traffic rate region. In other words, achieving 100% throughput for any admissible multicast traffic pattern is not possible. In this paper, we first revisit the fundamental problems faced by input-queued switch in supporting multicast traffic. We then argue that multicast switch fabric is not necessary if a load-balanced approach is followed. Accordingly, an existing load-balanced two-stage switch architecture [12], consisting of unicast switch fabrics, can be adopted to provide 100% throughput for any admissible multicast traffic pattern. Since the two-stage switch requires no speedup in both switch fabric and packet buffers, we consider it a two-stage input-queued switch. It can be seen that its implementation complexity is much lower than conventional (single-stage) input-queued multicast switches. As compared with the work in [12], our approach is more systematic and we propose a more effective load balancing mechanism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call