Abstract

In conventional photolithography, diffraction limits the resolution to about one-quarter of the wavelength of the light used. We introduce an approach to photolithography in which multiphoton absorption of pulsed 800-nanometer (nm) light is used to initiate cross-linking in a polymer photoresist and one-photon absorption of continuous-wave 800-nm light is used simultaneously to deactivate the photopolymerization. By employing spatial phase-shaping of the deactivation beam, we demonstrate the fabrication of features with scalable resolution along the beam axis, down to a 40-nm minimum feature size. We anticipate application of this technique for the fabrication of diverse two- and three-dimensional structures with a feature size that is a small fraction of the wavelength of the light employed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.