Abstract

Characterization and structural design on monolithic stacked InGaN light-emitting diode (LED) are investigated numerically in an attempt to pursue multicolor light emission and wide spectral width. Crucial physical properties such as the energy band configurations, carrier distributions, and interband transitions are analyzed in detail, which are also utilized as an aid to justify the desired characteristics of the LED structures under study. The compositions of multi-quantum wells, as well as the thicknesses of quantum barriers in each unit stacked LED are appropriately adjusted to simplify the tandem LED structure and optimize the overall emission spectra. Upon optimization, a monolithic tunnel-junction LED with an emission spectral width of approximately 110 nm, full width at half maximum, is demonstrated with only three unit stacked LEDs and two tunnel junctions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.