Abstract

N-doped and (Al,N)-codoped ZnO films were synthesized by oxidative annealing of (Zn + Zn3N2) films, which were fabricated by reactive magnetron sputtering. Both n- and p-type conductions were obtained in these ZnO:N and ZnO:AlN films. Optimal oxidation treatments for achieving p-type ZnO are annealing at 400–600 °C for 10–60 min, depending on the film thickness and morphology. The electric properties were found to be very sensitive to the annealing conditions and film structure. As-deposited (Zn + Zn3N2) films with and without Al addition had carrier concentrations of 1021–1022 cm−3. After conversion to ZnO, the n-type films had a carrier concentrations up to 1019 cm−3, whereas the p-type ZnO:N films had hole concentrations of 1014–1016 cm−3. (Al,N)-codoping increased the hole concentration of p-type film to 1018 cm−3 despite a decrease in Hall mobility. The photoluminescence properties of the p-type ZnO films were also investigated. The synthesis of p-type ZnO:AlN by oxidative annealing is believed to provide an alternative approach to realize p-type conduction in codoped ZnO film by using N2 as the N source.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.