Abstract

The optimization of heat engines was intensively explored to achieve higher efficiency while maintaining the output power. However, most investigations were limited to a few finite-time cycles, e.g., the Carnot-like cycle, due to the complexity of the finite-time thermodynamics. In this paper, we propose a class of finite-time engine with quantum Otto cycle, and demonstrate a higher achievable efficiency at maximum power. The current model can be widely utilized, benefitting from the general C/τ^{2} scaling of extra work for a finite-time adiabatic process with long control time τ. We apply the adiabatic perturbation method to the quantum piston model and calculate the efficiency at maximum power, which is validated with an exact solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.