Abstract

Due to the high demands of searchability over encrypted data, searchable encryption (SE) has recently received considerable attention and been widely suggested in encrypted cloud storage. Typically, the cloud server is assumed to be honest-but-curious in most SE-based cloud storage systems, i.e., the cloud server should follow the protocol to return valid and complete search results to users. However, this trust assumption is not always true due to some unanticipated situations, such as misconfigurations and malfunctions. Therefore, the function of verifiability of search results becomes crucial for the success of SE-based cloud storage systems. For this reason, many verifiable SE schemes have been proposed; however, they either fail to support query operators “OR”, “AND”, “ <inline-formula><tex-math notation="LaTeX">$\ast$</tex-math></inline-formula> ” and “?” simultaneously, or require many time-consuming operations. Aiming at addressing this problem, in this paper, we propose a new verifiable SE scheme for encrypted cloud storage. The proposed scheme is characterized by integrating various techniques, i.e., bitmap index, radix tree, format preserving encryption, keyed-hash message authentication code and symmetric key encryption, for achieving efficient and verifiable conjunctive and fuzzy queries over encrypted data in the cloud. Detailed security analysis shows that our proposed scheme holds the confidentiality of data and verifiability of search results at the same time. In addition, extensive experiments are conducted, and the results demonstrate our proposed scheme is efficient and suitable for users to retrieve their data from the cloud to their mobile devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.