Abstract

We derive a lower bound on the capacity of discrete-time Rician-fading channels that are selective both in time and frequency. The noncoherent setting is considered, where neither the transmitter nor the receiver knows a priori the actual channel realization. Single-input single-output communications subject to both average and peak power constraints are investigated. The lower bound assumes independent and identically distributed input data and is expressed as a difference between two terms. The first term is the information rate of the coherent channel with a weighted signal-to-noise ratio that results from the peak-power limitation. The second term is a penalty term, explicit in the Doppler spectrum of the channel, that captures the effect of the channel uncertainty induced by the noncoherent setting. The impact of channel selectivity and power constraints are discussed, and numerical applications on an experimental Rician channel surveyed in an underwater acoustic environment are also provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.