Abstract
We study the achievable rates of submarine fiber systems in the high-dimensional design space of variables including span length, launch power, number of spatial channels, and power feed current. We identify the regimes in which nonlinearities or power feed equipment constraints become dominant, and demonstrate that optimized system design evolves toward the linear regime as the system scales to a high number of spatial channels. We calculate the bit rate achievable by uniform and probabilistically shaped M-ary Quadrature Amplitude Modulation constellations to identify potential capacity-achieving implementations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.