Abstract

Relayed transmissions enable low-power communications among nodes (possibly separated by a large distance) in wireless networks. Since the capacity of general relay channels is unknown, we investigate the achievable rates of relayed transmissions over fading channels for two transmission schemes: the block Markov coded and the time-division multiplexed (TDM) transmissions. The normalized achievable minimum energy per bit required for reliable communications is derived, which also enables optimal power allocation between the source and the relay. The time-sharing factor in TDM transmissions is optimized to improve achievable rates. The region where relayed transmission can provide a lower minimum energy per bit than direct transmission, as well as the optimal relay placement for these two transmission schemes, are also investigated. Numerical results delineate the advantages of relayed, relative to direct, transmissions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.