Abstract

Decision support systems based on machine learning models should be able to help users identify opportunities and threats. Popular model-agnostic explanation models can identify factors that support various predictions, answering questions such as “What factors affect sales?” or “Why did sales decline?”, but do not highlight what a person should or could do to get a more desirable outcome. Counterfactual explanation approaches address intervention, and some even consider feasibility, but none consider their suitability for real-time applications, such as question answering. Here, we address this gap by introducing a novel model-agnostic method that provides specific, feasible changes that would impact the outcomes of a complex Black Box AI model for a given instance and assess its real-world utility by measuring its real-time performance and ability to find achievable changes. The method uses the instance of concern to generate high-precision explanations and then applies a secondary method to find achievable minimally-contrastive counterfactual explanations (AMCC) while limiting the search to modifications that satisfy domain-specific constraints. Using a widely recognized dataset, we evaluated the classification task to ascertain the frequency and time required to identify successful counterfactuals. For a 90% accurate classifier, our algorithm identified AMCC explanations in 47% of cases (38 of 81), with an average discovery time of 80 ms. These findings verify the algorithm’s efficiency in swiftly producing AMCC explanations, suitable for real-time systems. The AMCC method enhances the transparency of Black Box AI models, aiding individuals in evaluating remedial strategies or assessing potential outcomes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call