Abstract

The performance of impulse radio is investigated for ultra-wideband (UWB) channels and orthogonal M-ary pulse position modulation (PPM) in terms of the maximum achievable information rate, where the outputs of the M-ary correlation receiver implemented through the rake structure with conventional maximal ratio combining are subject to either soft or hard decisions. The major difference observed between the soft- and hard-output systems is that at low values of the mutual information the minimum information bit energy to noise ratio required for reliable communication increases with the constellation size for the hard-output systems. Furthermore, it is demonstrated that independent of the type of the output, achievable rates are considerably low at medium-to-large signal-to-noise ratio (SNR) values in UWB channels compared to those in additive white Gaussian noise channels, as the frequency-selectivity of the UWB channel destroys the orthogonality of the transmitted PPM signals. Interference from other users and constellation size put additional constraints on the achievable rates at high SNR.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call