Abstract

The problem of analytical evaluation of the maximum rate at which information can be reliably transmitted on a nonlinear wavelength division multiplexing fiber-optic channel with a given modulation format and detection strategy is addressed. An approximate solution of the nonlinear Schrödinger equation is adopted to obtain an accurate analytical discrete-time channel model, valid for arbitrary link configurations and modulation formats. By exploiting the concept of mismatched decoding, considering a sub-optimum detection strategy that accounts for intra-channel nonlinearities, the proposed model is employed to derive closed-form expressions of the achievable information rate with various modulation formats. All the analytical results are verified through comparison with numerical simulations in different scenarios.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.