Abstract
Previous work by Diffo Lambo and Moulen [Theory and Decision 53, 313–325 (2002)] and Felsenthal and Machover [The Measurement of Voting Power, Edward Elgar Publishing Limited (1998)], shows that all swap preserving measures of voting power are ordinally equivalent on any swap robust simple voting game. Swap preserving measures include the Banzhaf, the Shapley–Shubik and other commonly used measures of a priori voting power. In this paper, we completely characterize the achievable hierarchies for any such measure on a swap robust simple voting game. Each possible hierarchy can be induced by a weighted voting game and we provide a constructive proof of this result. In particular, the strict hierarchy is always achievable as long as there are at least five players.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.