Abstract
In this paper, we study new network information flow called multiple-input multiple-output (MIMO) two-way relay interference channels where two links of relay systems are interfering with each other. In this system, we characterize the achievable total degrees of freedom (DOF) when all user nodes and relays have M and N antennas, respectively. We provide three different methods, namely, time-division multiple access, signal space alignment for network coding (SSANC), and a new interference neutralization (IN) scheme. In the SSA-NC scheme, one relay is selected to fully exploit the dimension of the chosen relay for network coding. For the IN, we propose a new relay transmission scheme where two relays cooperatively design the beamforming vectors so that the interference signals are neutralized at each receiver. By adopting three different relaying strategies, we show that the DOF of max {min(4N, 2M), min(2N, 2⌊4/3M⌋), min(2N - 1, 4M)} is achieved for MIMO two-way relay interference channels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.