Abstract

The angle between two compressed sparse vectors subject to the norm/distance constraints imposed by the restricted isometry property (RIP) of the sensing matrix plays an important role in the studies of many compressive sensing (CS) problems. Assuming that (i) u and v are two sparse vectors with (u, v) = θ and (ii) the sensing matrix Φ satisfies RIP, this paper is aimed at analytically characterizing the achievable angles between Φu and Φv. Motivated by geometric interpretations of RIP and with the aid of the well-known law of cosines, we propose a plane geometry based formulation for the study of the considered problem. It is shown that all the RIP-induced norm/distance constraints on Φu and Φv can be jointly depicted via a simple geometric diagram in the two-dimensional plane. This allows for a joint analysis of all the involved algebraic constraints from a geometric perspective. By conducting plane geometry analyses based on the constructed diagram, closed-form formulae for the maximal and minimal achievable angles are derived. Computer simulations confirm that the proposed solution is tighter than an existing algebraic-based estimate derived using the polarization identity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call