Abstract

Delta gene expression in Drosophila is regulated by proneural basic helix-loop-helix (bHLH) transcription factors, such as acheate-scute. In vertebrates, multiple Delta-like and proneural bHLH genes are expressed during neurogenesis, especially in the retina. We recently uncovered a relationship between Acheate-scute like 1 (Ascl1), Delta-like genes, and Notch in chick retinal progenitors. Here, we report that mammalian retinal progenitors are also the primary source of Delta-like genes, likely signaling through Notch among themselves, while differentiating neurons expressed Jagged2. Ascl1 is coexpressed in Delta-like and Notch active progenitors, and required for normal Delta-like gene expression and Notch signaling. We also reveal a role for Ascl1 in the regulation of Hes6, a proneurogenic factor that inhibits Notch signaling to promote neural rather than glial differentiation. Thus, these results suggest a molecular mechanism whereby attenuated Notch levels coupled with reduced proneurogenic activity in progenitors leads to increased gliogenesis and decreased neurogenesis in the Ascl1-deficient retina.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.