Abstract

Achalasia subtypes on high-resolution manometry (HRM) prognosticate treatment response and help direct management plan. We aimed to utilize parameters of distension-induced contractility and pressurization on functional luminal imaging probe (FLIP) panometry and machine learning to predict HRM achalasia subtypes. One hundred eighty adult patients with treatment-naïve achalasia defined by HRM per Chicago Classification (40 type I, 99 type II, 41 type III achalasia) who underwent FLIP panometry were included: 140 patients were used as the training cohort and 40 patients as the test cohort. FLIP panometry studies performed with 16-cm FLIP assemblies were retrospectively analyzed to assess distensive pressure and distension-induced esophageal contractility. Correlation analysis, single tree, and random forest were adopted to develop classification trees to identify achalasia subtypes. Intra-balloon pressure at 60mL fill volume, and proportions of patients with absent contractile response, repetitive retrograde contractile pattern, occluding contractions, sustained occluding contractions (SOC), contraction-associated pressure changes >10mmHg all differed between HRM achalasia subtypes and were used to build the decision tree-based classification model. The model identified spastic (type III) vs non-spastic (types I and II) achalasia with 90% and 78% accuracy in the train and test cohorts, respectively. Achalasia subtypes I, II, and III were identified with 71% and 55% accuracy in the train and test cohorts, respectively. Using a supervised machine learning process, a preliminary model was developed that distinguished type III achalasia from non-spastic achalasia with FLIP panometry. Further refinement of the measurements and more experience (data) may improve its ability for clinically relevant application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.