Abstract

The nucleosome remodelling ATPase ISWI resides in several distinct protein complexes whose subunit composition reflects their functional specialization. Association of ISWI with ACF1, the largest subunit of CHRAC and ACF complexes, improves the efficiency of ISWI-induced nucleosome mobilization by an order of magnitude and also modulates the reaction qualitatively. In order to understand the principle by which ACF1 improves the efficiency of ISWI, we mapped their mutual interaction requirements and generated a series of ACF complexes lacking conserved ACF1 domains. Deletion of the C-terminal PHD finger modules of ACF1 or their disruption by zinc chelation profoundly affected the nucleosome mobilization capability of associated ISWI in trans. Interactions of the PHD fingers with the central domains of core histones contribute significantly to the binding of ACF to the nucleosome substrate, suggesting a novel role for PHD modules as nucleosome interaction determinants. Connecting ACF to histones may be prerequisite for efficient conversion of ATP-dependent conformational changes of ISWI into translocation of DNA relative to the histones during nucleosome mobilization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.