Abstract

Infusion of α,β-methylene ATP (α,β-meATP) into murine neck muscle facilitates brainstem nociception. This animal experimental model is suggested to be appropriate for investigating pathophysiological mechanisms in tension-type headache. It was hypothesized that d-lysine acetylsalicylic acid (ASA, aspirin®) reverses this α,β-meATP effect. Facilitation of neck muscle nociceptive processing was induced via bilateral infusion of α,β-meATP into semispinal neck muscles (100 nM, 20 μl each) in 42 anesthetized mice. Brainstem nociception was monitored by the jaw-opening reflex elicited via electrical tongue stimulation. The hypothesis was addressed by subsequent (15, 30, 60 mg/kg) and preceding (60 mg/kg) intraperitoneal ASA injection. Saline served as control to ASA solution. Subsequent ASA dose-dependently reversed α,β-meATP-induced reflex facilitation and was the most prominent with 60 mg/kg. Preceding 60 mg/kg ASA prevented reflex facilitation. Cyclooxygenases are involved in nociceptive transmission. Former experiments showed that unspecific inhibition of cyclooxygenases does not alter the α,β-meATP effect. This suggests a specific mode of action of ASA. The concept is accepted that neck muscle nociception is involved in the pathophysiology of tension-type headache. Thus, objective proof of ASA effects in this experimental model may emphasize its major role in pharmacological treatment of tension-type headache attacks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.