Abstract

BackgroundHigh and low temperatures constitute the most damaging type of abiotic stress and limit the survival, and productivity of plants. The present study aimed to evaluate the role of exogenous applications of acetylsalicylic acid (ASA) in reducing the deleterious effects of cold stress. Phaseolus vulgaris L. seedlings were treated with foliar-sprayed ASA at concentrations of 0–3 mM and then subjected to chilling stress at 4 °C for 2 or 4 days.ResultsGrowth, photosynthesis, biochemical alterations, oxidative damage and antioxidant enzyme activities as well as the expression of cold-responsive genes (CBF3–COR47), were monitored during the experiment. ASA applications substantially improved several growth and photosynthetic parameters, including shoot biomass, dry weight, and photosynthetic pigments, of P. vulgaris seedlings exposed to different durations of chilling stresses. The ASA foliar spray treatments significantly (p < 0.05) rescued the growth and photosynthetic pigments of P. vulgaris seedlings under different chilling stresses. The total soluble sugars markedly increased during 0–4 days of chilling stress following ASA foliar spraying. The exogenous application of ASA significantly (p < 0.05) increased the accumulation of proline in P. vulgaris seedlings under chilling stress. At the gene expression level, ASA significantly (p < 0.05) upregulated the cold-responsive genes CBF3 and COR47.ConclusionsAs a result, we speculate that, the application of exogenous ASA alleviated the adverse effects of chilling stress on all measured parameters, and 1 and 2 mM ASA exhibited the greatest effects.

Highlights

  • High and low temperatures constitute the most damaging type of abiotic stress and limit the survival, and productivity of plants

  • The seedlings of P. vulgaris grown under normal conditions and treated with foliar sprays of different concentrations of acetylsalicylic acid (ASA) (0 to 3 mM ASA) exhibited no significant differences in various growth parameters (p > 0.05), especially shoot biomass (g plant−1), root biomass (g plant−1), the shoot:root ratio (g g−1), chl. a, chl. b, and total chlorophyll (Table 2)

  • P. vulgaris seedlings exposed to chilling stress at two levels (2 or 4 days) and seedlings not treated with ASA foliar sprays showed general deleterious effects on growth parameters (Table 2)

Read more

Summary

Introduction

High and low temperatures constitute the most damaging type of abiotic stress and limit the survival, and productivity of plants. Climate change and global warming generate different kinds of biotic and abiotic stresses that in turn alter plant responses at the transcriptomic, proteomic and metabolomic levels (Chartzoulakis and Psarras 2005; Khan and Khan 2013; El Kelish et al 2014). One of the essential cellular response throughout a freeze–thaw cycle is the maintenance of plasma membrane integrity. This maintenance reduces the efficiency of photosystem II (PSII); damages photosystem I (PSI); alters the carbon reduction cycle, ­CO2 assimilation, and photosynthetic pigment complex systems; and accelerates reactive oxygen species (ROS) formation (Guy 1990; Thomashow 2001; Allen and Ort 2001; Saibo et al 2009)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.