Abstract

Platinum layers show higher specific oxygen reduction reaction (ORR) activities than nanoparticles, and smooth monolayers of platinum on polycrystalline gold have been achieved by electrodeposition from CO-saturated solutions. Since Pt monolayers are interesting catalytic systems, this methodology was attempted on acetylene-treated titania nanotubes (TNAs) with high conductivity. However, the investigation of the as-treated TNAs found that probably nanotubes with an oxygen-containing graphitic overlayer were formed. It was observed that deposition after partial oxidative removal of the overlayer led to very low ORR activities while deposition on the intact overlayer gave rise to the highest activities obtained in our research so far. This is attributed to a “tie-layer” effect, in which the carbon layer screens the negative effects of the underlying TiO2 layer. The interesting effects of the graphitic overlayer on the ORR activity of the Pt deposits on acetylene-treated TNAs offer a strategy to mitigate the unfavorable interactions of the Pt/TiO2 interface. However, the carbon layer in this study was found not to be stable upon potential cycling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.