Abstract

SnO2 nanowires have been fabricated using thermal evaporation of the mixed powders of SnO2 and active carbon with Au catalysts. The morphology and structure of the prepared nanowires are determined on the basis of field-emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectrometer (EDS), x-ray diffraction (XRD) and transmission electron microscopy (TEM). The comb-shape interdigitating electrode made by MEMS technology is used to auxiliary investigating the gas sensing performance of the synthesized SnO2 nanowires. The SnO2 nanowires have sensing response to acetylene concentration of 1000 ppm under operated temperature of 300°C. The gas sensing mechanism is attributed to the gas adsorption and desorption processes occurring on the surface of the gas sensing material.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.