Abstract

Acetylene reduction was examined periodically for as long as 68 months in the outer and inner bark, sapwood, and heartwood of decaying logs of western hemlock [Tsuga heterophylla (Raf.) Sarg.] western redcedar (Thuja plicata D. Don), Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco], and Pacific silver fir (Abies amabilis Dougl. ex Forbes) in the western Oregon Cascade Mountains. Tissues from freshly cut logs from sound trees were unable to reduce acetylene. However, after 18 months of decomposition, acetylene reduction was found in all log tissues except heartwood. Over the 68-month study period, no significant relationship between reduction rate and tissue moisture was found. Acetylene reduction rates differed significantly among tissues, log species, and time of exposure to decomposers. Although acetylene reduction generally showed a steady increase with time, tissues of some species showed a more complex, nonlinear pattern of change. Although the amount of nitrogen fixed is low compared to the total present in decaying logs, it might be an important source of readily available nitrogen for the microbiota responsible for decomposition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call