Abstract

Acetylene is a slow-binding inhibitor of the Ni- and Fe-containing dimeric hydrogenase isolated from Azotobacter vinelandii. Acetylene was released from hydrogenase during the recovery from inhibition. This indicates that no transformation of acetylene to another compound occurred as a result of the interaction with hydrogenase. However, the release of C2H2 proceeds more rapidly than the recovery of activity, which indicates that release of C2H2 is not sufficient for recovery of activity. Acetylene binds tightly to native hydrogenase; hydrogenase and radioactivity coelute from a gel permeation column following inhibition with 14C2H2. Acetylene, or a derivative, remains bound to the large 65,000 MW subunit (and not to the small 35,000 MW subunit) of hydrogenase following denaturation as evidenced by SDS-PAGE and fluorography of 14C2H2-inhibited hydrogenase. This result suggests that C2H2, and by analogy H2, binds to and is activated by the large subunit of this dimeric hydrogenase. Radioactivity is lost from 14C2H2-inhibited protein during recovery. The inhibition is remarkably specific for C2H2: propyne, butyne, and ethylene are not inhibitors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call