Abstract

Fossil fuel alternatives, such as solar energy, are moving to the forefront in a variety of research fields. Organic photovoltaic systems hold the promise of a lightweight, flexible, cost-effective solar energy conversion platform, which could benefit from simple solution-processing of the active layer. The discovery of semiconductive polyacetylene by Heeger et al. in the late 1970s was a milestone towards the use of organic materials in electronics; the development of efficient protocols for the palladium catalyzed alkynylation reactions and the new conception of steric and conformational advantages of acetylenes have been recently focused the attention on conjugated triple-bond containing systems as a promising class of semiconductors for OPVs applications. We review here the most important and representative (poly)arylacetylenes that have been used in the field. A general introduction to (poly)arylacetylenes, and the most common synthetic approaches directed toward making these materials will be firstly given. After a brief discussion on working principles and critical parameters of OPVs, we will focus on molecular arylacetylenes, (co)polymers containing triple bonds, and metallopolyyne polymers as p-type semiconductor materials. The last section will deal with hybrids in which oligomeric/polymeric structures incorporating acetylenic linkages such as phenylene ethynylenes have been attached onto C60, and their use as the active materials in photovoltaic devices.

Highlights

  • Electronic and optoelectronic devices using π-conjugated organic materials as active elements, including organic light-emitting diodes (OLEDs), organic photovoltaic devices (OPVs), organic field-effect transistors (OFETs), organic photorefractive devices and so forth, have recently attracted a great deal of attention inspired by the promise of low-cost printed electronics and the significant scientific challenges that must be overcome for this goal to be realized [1,2,3,4,5,6,7,8,9]

  • The state-of-the-art in organic photovoltaics is currently represented by a bulk heterojunction (BHJ) solar cell based on the blend film of a polymer based on alternating ester substituted thieno[3,4-b]thiophene and benzodithiophene units (PTB7) with (6,6)-phenyl-C71-butyric acid methyl ester (C71-phenyl-C61-butyric acid methyl ester (PCBM)) [68], showing efficiencies over 7%

  • Since the pioneering investigations of Tang and co-workers [143], huge progresses have been made in organic solar cells and a large number of molecules and polymers were investigated

Read more

Summary

Introduction

Electronic and optoelectronic devices using π-conjugated organic materials as active elements, including organic light-emitting diodes (OLEDs), organic photovoltaic devices (OPVs), organic field-effect transistors (OFETs), organic photorefractive devices and so forth, have recently attracted a great deal of attention inspired by the promise of low-cost printed electronics and the significant scientific challenges that must be overcome for this goal to be realized [1,2,3,4,5,6,7,8,9]. In the past few decades, increasing interest has focused on conjugated triple-bond containing systems, (poly)arylene ethynylenes ( referred to as (poly)arylacetylenes), as a promising class of semiconductors, due to the availability of efficient protocols for palladium catalyzed alkynylation reactions and the new conception of their steric and conformational advantages. Larger band gaps and narrower bandwidths are generally found for poly(phenylene ethynylene) (PPE) than for its structurally close relative (poly)phenylenevinylene (PPV), which results into more difficult charge separation in (poly)arylacetylenes [23]. Despite these findings, an alkyne linkage is more accommodating than an alkene to steric and conformational constraints. After a brief overview of the most commonly used synthetic methods leading to (poly)arylacetylenes, we will summarize in this review article the recent developments in their use as semiconductor materials for organic/hybrid photovoltaic devices

Synthesis
Photovoltaic Studies
Small Molecules
Polymers
Copolymers
Metallopolyyne Polymers
Donor-Fullerene Hybrids
Findings
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.