Abstract

The present study focuses on incorporation of alternative fuels along with existing internal combustion engines (ICE) without making major modifications. Acetylene has good combustion qualities with auto ignition temperature of 3050C. To increase the use of acetylene as non-petroleum gas in ICE, we carried experimentation on a single cylinder constant speed diesel engine. In this study, direct injection (DI) and constant speed compression ignition (CI) engine tested with pure diesel and diesel-acetylene dual fuel mode. We conducted experiments to study the performance characteristics of DI diesel engine in dual fuel mode by aspirating acetylene gas in the inlet manifold with a flow rate of 2 liters/minute (lpm) of acetylene. Observation recorded that, during idling condition to get the same power output when aspirated with the 2 lpm acetylene, 3.5% less amount of diesel required. For maximum load 9% less amount of diesel required. And 12% less amount of diesel required during partial loading condition. Also, the performance shows increased trend in indicated power and brake power by 1-2%. It was also observed that use of acetylene gas has more influence on emission of CO2. Emission results showed that without a catalytic convertor, 8% decreased amount of CO2 released during idling condition. Similar emission results of engine found during full load condition when acetylene used along with diesel, supporting the health of environment for reduction of global warming.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.