Abstract

(1) Microsomal membranes from white rabbit muscle enriched in sarcoplasmic reticulum (SR) were used to investigate the preferential localization of acetylcholinesterase (AChE) in these membranes. (2) Integrity and orientation of the vesicles was assessed by measuring the inulin-inaccessible space of the vesicles and its calcium-loading capacity. (3) Treatment of the membranes with diisopropyl phosphorofluoridate (DFP), an irreversible inhibitor which is free soluble in lipid, produced an almost complete inactivation of AChE. The inhibition was prevented in assays performed with the non-permeant reversible inhibitor BW284c51 (BW). (4) Similar results were obtained if echothiophate iodide (ECHO), an irreversible and poorly permanent inhibitor, instead of DFP was used. (5) Sedimentation profiles of enzyme solubilized with Triton X-100 from membranes inhibited by DFP after protection with BW showed a minor reduction in the relative proportion of a 4.5 S (G 1) form. (6) Treatment of intact or saponin-permeabilized membranes with concanavalin A (ConA) produced enzyme-lectin complexes. In both cases, most of the enzyme was recovered in the sedimented complexes after centrifugation of the Triton-solubilized membranes. (7) Incubation of intact membranes with the antibody AE1 led to the formation of immuno complexes. Sedimentation analyses of the molecular forms of AChE revealed a shift in the sedimentation coefficients, whether the antibody was added before or after solubilization of the enzyme. (8) These results firmly establish an external localization of AChE in SR, most of the protein backbone facing the cytoplasmic side of the membrane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.