Abstract

Three distinct acetylcholinesterases were detected in the annelid oligochaete Dendrobaena veneta. Two enzymes (alpha, beta), copurified from a Triton-X-100-soluble extract of whole animals by affinity (edrophonium-Sepharose) chromatography, were separately eluted from a Sephadex G-200 column. Gel-filtration chromatography, sedimentation analysis and SDS/PAGE showed the alpha and beta forms to be a globular dimer (110 kDa, 7.0 S) and a hydrophilic monomer (58 kDa, 5.0 S) respectively, both weakly linked to the cell membrane. The third form (gamma), also purified to homogeneity by slower filtration through an edrophonium-Sepharose matrix, proved to be an amphiphilic globular dimer (133 kDa, 7.0 S) with a phosphatidylinositol anchor giving cell membrane insertion, detergent (Triton X-100, Brij 96) interaction and self-aggregation. The alpha acetylcholinesterase showed a fairly low substrate specificity: the beta form hydrolyzed propionylthiocholine at the highest rate and was inactive on butyrylthiocholine; the gamma acetylcholinesterase, showing a marked active-site specificity with differently sized substrates, was likely functional in cholinergic synapses. Studies with inhibitors showed incomplete inhibition of all three acetylcholinesterase by 1 mM eserine and different sensitivity for edrophonium or procainamide. The alpha and beta forms, sensitive to 1,5-bis(4-allyldimethylammoniumphenyl)-pentan-3-one dibromide, were unaffected by tetra(monoisopropyl)-pyrophosphortetramide, while both these agents inhibited the gamma enzyme. All three forms showed excess-substrate inhibition by acetylthiocholine. Enzyme activity was histochemically localized in the nerve ring and its minor branches. Monomeric acetylcholinesterase (beta) is likely the only form present in the ganglionic glial framework.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call