Abstract
We have studied acetylcholine (ACh) turnover at the cholinergic synapse between an identified motoneuron, the salivary burster (SB), and the muscle cells of the salivary duct (SD) in the terrestrial mollusk Limax maximus. Electrophysiological recordings were made of the SB action potentials and the SB-elicited junction potentials (JPs) on the SD. The amplitude of the JP was used as a measure of ACh release by the SB. The SB is an autoactive neuron that discharges 1 to 12 bursts of action potentials per min. During sustained bursting activity, the SB is able to maintain transmitter release for 18 hr even in the absence of exogenous choline. The size of SB-elicited JPs does not vary during 18 hr of activity. If the choline uptake blocker, hemicholinium-3 (HC-3; 20 microM), is present in the saline, transmitter release and JP size are depressed by about 30% after 14 hr of activity. Thus, the SB is partially dependent upon choline reuptake for maintained ACh synthesis and release. In high (9.45 mM)-potassium (K+) saline, the SB fired tonically at twice its average spike frequency. JP amplitude initially increased, then declined to an amplitude which was 60% of the initial level. The addition of 20 microM HC-3 to the high-K+ saline caused a 75 to 100% decrease in JP size within 30 min. Thus, during high-frequency tonic firing, the SB was primarily dependent on choline reuptake for ACh synthesis and release. After JP size had been reduced in high-K+ saline containing HC-3, the SB-SD synapse was returned to normal choline-free saline. The SB resumed bursting activity. JP amplitude gradually increased over the next 30 min. Thus, high-frequency firing in HC-3 had not depleted the SB of its entire endogenous store of choline or ACh. If the synapse was fatigued in high-K+ saline containing HC-3 and then placed in saline enriched with 300 microM choline, JP size increased within minutes. Thus, uptake of choline for ACh synthesis and release may be a more rapid process than mobilization of an endogenous transmitter store. Finally, the SB-SD synapse was fatigued in high-K+ saline containing HC-3. HC-3 was then removed from the saline. The SB maintained high-frequency tonic activity. JP size did not increase unless choline was added to the saline.(ABSTRACT TRUNCATED AT 400 WORDS)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.