Abstract
The matrix metalloproteinases (MMPs), responsible for the degradation of extracellular matrix (ECM) proteins, may regulate brain cellular functions. Choline acetyltransferase (ChAT) transfected murine neuroblastoma cell line N18TG2, that synthesize acetylcholine and show enhancement of several neurospecific markers (i.e., sinapsin I, voltage gated Na + channels, high affinity choline uptake) and fiber outgrowth, were studied for the MMP regulation during neuronal differentiation. Zymography of N18TG2 culture medium revealed no gelatinolytic activity, whereas after carbachol treatment of cells both MMP-9 and activated MMP-2 forms were detected. ChAT-transfected clone culture medium contains three MMP forms at 230, 92, and 66 kDa. Carbachol treatment increased MMP-2 and MMP-9 gene expression in N18TG2 cells and higher levels for both genes were also observed in ChAT transfected cells. The data are consistent with the hypothesis that acetylcholine brings about the activation of an autocrine loop modulating MMP expression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.