Abstract

ObjectiveThe present study aimed at investigating ATP release in response to acetylcholine (Ach) and pharmacologically elucidating the intracellular signal transduction pathway of this reaction in an ex vivo experiment. MethodsThe inferior turbinate mucosa was collected from 21 patients with chronic hypertrophic rhinitis who underwent endoscopic turbinectomy. The mucosa was shaped into a filmy round piece, and incubated with chemical(s) in Hank's balanced salt solution for 10min. After incubation, the ATP concentration was measured by a luciferin-luciferase assay. ResultsThe baseline release of ATP without stimulus was 57.2±10.3fM. The ATP release was significantly increased by stimulation with 100μM Ach. The Ach-induced ATP release was completely inhibited by removing extracellular Ca2+. Significant inhibition of the Ach-induced ATP release was also observed by the addition of 1μM atropine, 40μM 2-APB, 10μM CBX, and 100μM PPADS, whereas 30nM bafilomycin A1 did not affect the ATP release. ConclusionThese results indicate that the Ach-induced ATP release from the human nasal mucosa is dependent on the pannexin-1 channel and purinergic P2X7 receptor, suggesting that these two molecules constitute a local autocrine/paracrine signaling system in the human nasal epithelium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call