Abstract

Previous studies suggest that acetylcholine (ACh) is a transmitter released from taste cells as well as a transmitter in cholinergic efferent neurons innervating taste buds. However, the physiological effects on taste cells have not been established. I examined effects of ACh on taste-receptor cells by monitoring [Ca2+]i. ACh increased [Ca2+]i in both rat and mudpuppy taste cells. Atropine blocked the ACh response, but D-tubocurarine did not. U73122, a phospholipase C inhibitor, and thapsigargin, a Ca2+-ATPase inhibitor that depletes intracellular Ca2+ stores, blocked the ACh response. These results suggest that ACh binds to M1/M3/M5-like subtypes of muscarinic ACh receptors, causing an increase in inositol 1,4,5-trisphosphate and subsequent release of Ca2+ from the intracellular stores. A long incubation with ACh induced a transient response followed by a sustained phase of [Ca2+]i increase. In Ca2+-free solution, the sustained phases disappeared, suggesting that Ca2+ influx is involved in the sustained phase. Depletion of Ca2+ stores by thapsigargin alone induced Ca2+ influx. These findings suggest that Ca2+ store-operated channels may be present in taste cells and that they may participate in the sustained phase of [Ca2+]i increase. Immunocytochemical experiments indicated that the M1 subtype of muscarinic receptors is present in both rat and mudpuppy taste cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.