Abstract
Acetylcholine (ACh) protected against cardiac injury via promoting autophagy and mitochondrial biogenesis, however, the involvement of mitophagy in ACh-elicited cardioprotection remains unknown. In the present study, H9c2 cardiomyocytes were subjected to hypoxia/reoxygenation (H/R) and ACh treatment during reoxygenation. Mitophagy markers PTEN-induced kinase 1 (PINK1) and Parkin translocation were examined using western blot and confocal fluorescence microscopy. Mitochondrial membrane potential and reactive oxygen species (ROS) were detected with fluorescence staining. We found that H/R-treated cells exhibited reduced levels of PINK1 and Parkin in mitochondria, accompanied with decreased autophagy flux (reduced LC3-II/LC3-I and increased p62). Conversely, ACh increased PINK1 and Parkin translocation to mitochondria and enhanced autophagy proteins. Confocal imaging of Parkin and MitoTracker Green-labeled mitochondria further confirmed ACh-induced mitochondrial translocation of Parkin, which was reversed by M2 receptor antagonist methoctramine and M2 receptor siRNA, suggesting ACh could induce mitophagy by M2 receptor after H/R. Mitophagy inhibitor 3-methaladenine abolished ACh-induced mitoprotection, manifesting as aggravated mitochondrial morphology disruption, ATP and membrane potential depletion, increased ROS overproduction, and apoptosis. Furthermore, PINK1/Parkin siRNA attenuated the protective effects of ACh against ATP loss and oxidative stress due to mitochondrial-dependent injury. Taken together, ACh promoted mitochondrial translocation of PINK1/Parkin to stimulate cytoprotective mitophagy via M2 receptor, which may provide beneficial targets in the preservation of cardiac homeostasis against H/R injury.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.